

NeuroSoC Project

Irem Boybat, IBM Research Europe - Zurich NeuroEdge, 18th January 2024

ŘÌ

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

This work was supported by European Union (Horizon Europe Grant Agreement n°101070634), Swiss State Secretariat for Education, Research and Innovation (SERI) under contracts number SBFI 22.00202 and 23.00205 and UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee [grant number 10040829]

WHIMMIN MAN

Presentation overview

- NeuroSoC project overview and rationale
- Al at the edge and promise of in-memory computing
- Building blocks of the edge SoC
 - o Computational phase-change memory technology
 - o Analog in-memory computing tiles based on phase-change memory devices
 - o NeuroSoC SoC architecture
 - o Algorithms and software tools
 - o Applications requirements, integration, and use- cases demonstrations

About NeuroSoC

NeuroSoC stands for:

A multiprocessor System-on-Chip with In-Memory neural processing unit

A 42-month EU/UKRI/Switzerland funded project aiming at using Phase Change Memory and FD-SOI 28 nm technologies to develop an advanced multiprocessor System-on-Chip

NeuroSoC at a glance

Call and Topic/Activity:

🏶 GA number:

Type of action:

Project cost:

Duration:

🏶 Website:

HORIZON-CL4-2021-DIGITAL-EMERGING-01-01 – Ultra-low-power, secure processors for edge computing (RIA)
101070634
RIA (Research & Innovation Action)
7 952 677 EUR (only beneficiaries)
42 months; start 1 September 2022
www.neurosoc.eu

An European strong value chain

st h

NeuroSoC Rationale

Significant research on highly energy efficient and lowlatency non-von Neumann computing paradigms such as inmemory computing (IMC)

Develop a flexible computing system where an analog IMC-based neural processing unit is integrated into a multi-processor functional safe and secure system-on-chip

To tackle the requirements of a wide set of edge-Al applications.

Relying on a solid, mature, and qualified reliable Phase Change Memory technology

> Will enable the creation of an industrially proven path answering to the level of maturity need compatible with a mass volume production and cost

ST roadmap towards the Al at the edge

s	STM32				STM32 portfolio			
¢	MPU	(100 × VEARS) * COMMITTEE				Up to 209	TM32MP1 S 0 1 GHz Cortex-A7 MHz Cortex-M4 400	TM32MP2 .5 GHz Cortex-A35 MHz Cortex-M33
*	High- performance MCUs			STM32F2 Up to 398 CoreMark 120 MHz Cortex-M3	STM32F4 Up to 608 CoreMark 180 MHz Cortex-M4	STM32F7 1082 CoreMark 216 MHz Cortex-M7 STM32H5 Up to 1023 CoreMark 250 MHz Cortex-M33	STM32H7 Up to 3224 CoreMark Up to 550 MHz Cortex -M7 240 MHz Cortex -M4	STM32N6 MCU with neural processing unit
》	Mainstream MCUs			STM32F3 245 CoreMark 72 MHz Cortex-M4	STM32G4 569 CoreMark 170 MHz Cortex-M4			Mixed-signal MCUs
		STM32C0 114 CoreMark 48 MHz Cortex M0+	STM32F0 106 CoreMark 48 MHz Cortex-M0	STM32G0 142 CoreMark 64 MHz Cortex-M0+	STM32F1 177 CoreMark 72 MHz Cortex-M3			
	ltra-low-power MCUs		STM32L0 75 CoreMark 32 MHz Cortex-M0+	STM32L4 273 CoreMark 80 MHz Cortex-M4	STM32L4+ 409 CoreMark 120 MHz Cortex-M4	STM32L5 443 CoreMark 110 MHz Cortex-M33	STM32U5 651 CoreMark 160 MHz Cortex-M33	
9	Wireless MCUs		STM32WL 162 CoreMark 48 MHz Cortex-M4 48 MHz Cortex-M0+	STM32WB0 64 MHz Cortex-M0+	STM32WB 216 CoreMark 64 MHz Cortex-M4 32 MHz Cortex-M0+	STM32WBA 407 CoreMark 100 MHz Cortex-M33		
	57	Latest	product generation	Radio co-processor only	New series intr	roduced in 2023	Pre-announcement	

STM32N6 upcoming general-purpose microcontroller with ST Neural-Art Accelerator™, a Neural Processing Unit

Evolution of Neural Processing Units (NPU)

۶<mark>۳</mark>

Analog in-memory computing basics

M columns/bitlines

N rows/wordlines

IBM HERMES project chip

nit-cells)

- Each of the 64 cores comprises 256x256 crossbar arrays of unit cells with peripheral circuitry (4M unit-cells)
- On-chip local and global digital processing as well as a communication fabric
- Each unit cell comprises of four phase-change memory devices (16M PCM devices)

IBM Heterogeneous architecture with 2D-mesh

- A heterogeneous architecture that combines AIMC compute cores with special-function compute cores for auxiliary digital computation
- A dense and efficient circuit-switched 2D mesh serves as the communication fabric

11

IBM AI HW Kit

Rasch et al., Proc. AICAS (2021) Le Gallo et al., APL Machine Learning (2023)

Overview

https://github.com/IBM/aihwkit

- Simulator that focuses on the algorithmic level and algorithmic advances of Analog in-memory computing
- AIMC training and inference simulations
- Bring your own models and datasets to evaluate the impact of emerging AIMC hardware on your DL workloads using the flexibility of PyTorch

Roadmap

- Additional neural network layers
- Algorithmic advances to improve training and inference accuracy
- Premium hardware demonstrations

Real hardware demonstrations

- The IBM Analog HW Acceleration Kit is an excellent tool for developing and testing algorithms for hardwareaware training
- Equipped with an inference simulator with drift and statistical (programming) noise models calibrated on hardware, direct HW access will be enabled in the near future
- Full GPU support and substantial online documentation

Presentation overview

- NeuroSoC project overview and rationale
- Al at the edge and promise of in-memory computing
- Building blocks of the edge SoC
 - o Computational phase-change memory technology
 - o Analog in-memory computing tiles based on phase-change memory devices
 - o NeuroSoC SoC architecture
 - o Algorithms and software tools
 - o Applications requirements, integration, and use- cases demonstrations

Focus on the PCM memory

- Characterization and modelling of a Phase Change Memory (PCM) device developed by ST-I in FD-SOI 28nm technology as building block of the In-Memory Computing (IMC) tile
- Optimization vs temporal drift and noise
- Statistical evaluation of programming algorithms, current distributions, and reliability of the analog IMC PCM cell
- Characterization of the computational precision and compensation (drift/read noise/temperature dependence)
- Development the analog IMC tile

Phase-change memory

Amorphous

Disordered, high resistance

Commonly used phase change materials

Wuttig & Yamada, Nature Materials, 2007 Le Gallo et al., J. Phys. D, 2020

- A nanometric volume of phase change material between two electrodes
- A reversible phase transition is induced via Joule heating between crystalline (SET) and amorphous phases (RESET)
- Continuum of conductance levels can be achieved via intermediate phase configurations

ST High Density Embedded PCM Cell in 28nm FDSOI

NeuroSoC SoC Architecture

NeuroSoC System on Chip system level architecture comprises of:

- Cluster of PCM analog in-memory computing tiles
- Non-volatile memory and SRAM memory support
- Functional safe host processor
- Specialized digital processing units
- RISC-V co-processor

IMC PCM tile

- Leveraging the multilevel PCM device to design an analog IMC tile
 - Definition of the unit cell and a suitable array structure
 - Design of the associated digital and analog circuits
 - Anticipate inputs from security analysis to make the resulting IMC tile more robust against side channels attacks and for improved security

RISC-V Co processor features

- Complement the computing capabilities of the analog in-memory computing (AIMC) tiles and other specialized digital processing units (DPUs) present in the IMNPU
- Handles the execution of Deep Neural Network (DNN)-related workloads that must be executed at higher dynamic range for accuracy concerns, exploiting the floating-point arithmetic
- Supports various activation functions (ReLu, sigmoid, tahn), complex layers such as upsampling, depth-wise, softmax

NeuroSoC Toolchain Optional inputs Existing trained deep learning models Hardware Training data constraints К 🖧 🕅 30 ONNX conversion Layer leuroSoC Platfe Generation of Emulation model, source code, hardware configuration Execution NeuroSoC Execution on emulator platform INMPU silicon

🏶 Software toolchain

- From high level network description
- Converted in an intermediate format
- Optimized for the specific platform (reconfigurable)
- Performance and functional emulation
- Execution on hardware once available

neur%SoC

Applications requirements, integration, and use- cases demonstrations

- Investigate edge-applications where NeuroSoC can offer a compelling advantage.
 - Selection and qualification of applications.
 - Benchmarking of SoA and emerging solutions.
 - Proposition of an evaluation framework.
 - Toolchains, Accuracy, Power, Size, Throughput
 - Assessment of performances vs requirements.

ERGO

0.1

Watts (W

Maxim Integrated

MAX7800

0.01

NDP2

0.01

0.001

STMicroelectronics

Kneion

KL520 NPU

Greenwaves

GAP9

STM 32

neur%SoC

RK358

NXP

Kneron KL720 NPU

i.MX 8M Plus

Xilin

Kria 260

Contact details

STMicroelectronics

- 🏶 M. Giulio Urlini, Project Coordinator
- giulio[dot]urlini[at]stmicroelectronics[dot]com

🏶 Benkei

- Mrs Fabienne Brutin, Project administrative manager,
- fabienne[at]benkei[dot]fr

۶<mark>۳</mark>

Acknowledgments

The NeuroSoC project is supported by European Union (Horizon Europe Grant Agreement n°101070634), Swiss State Secretariat for Education, Research and Innovation (SERI) under contracts number SBFI 22.00202 and 23.00205 and UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee [grant number 10040829]

Funded by the European Union

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Stay tuned: www.neurosoc.eu, https://www.linkedin.com/company/neurosoc